Effects of geometrical characteristics of surface roughness on droplet wetting.

نویسندگان

  • Yu-Jane Sheng
  • Shaoyi Jiang
  • Heng-Kwong Tsao
چکیده

Surface roughness is known to alter the wettability on a solid substrate. In general, either Wenzel or Cassie-Baxter theory is adopted to describe the apparent contact angle. Following the minimum free energy pathway associated with the imbibition process, we have derived a generalized expression for the apparent contact angle on a textured surface and the liquid-gas contact area within the groove that plays a key role. Depending on the geometrical characteristics of the grooves, the surface wetting falls into three regimes: (i) single stable state which is either Wenzel (completely wetted roughness) or Cassie-Baxter (completely nonwetted roughness) state, (ii) two stable states (Wenzel and Cassie-Baxter) separated by an energy barrier, and (iii) single stable state with partially wetted roughness. The sufficient condition for each regime is derived and several groove geometries are given to show the free energy path. Alteration in the geometric parameters may lead to the wetting crossover. We also show that the Cassie-Baxter can occur at a hydrophilic surface for particular pore shapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر نوع ساختار و زبری سطح بر زاویه ترشوندگی یک چدن هیپویوتکتیک با آب

Preliminary results of a research on the effects of microstructure and surface roughness of a hypoeutectic cast iron on its wetting angle are presented in this article. For this purpose, molten cast iron was solidified at different cooling rates to produce two samples of the same composition, i.e. a gray cast iron with A type flake graphite and a white cast iron. Two samples were then prepared ...

متن کامل

Surface structure determines dynamic wetting

Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers ...

متن کامل

Electrostatic cloaking of surface structure for dynamic wetting

Dynamic wetting problems are fundamental to understanding the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness c...

متن کامل

Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects.

Evaporation of a sessile droplet is a complex, nonequilibrium phenomenon. Although evaporating droplets upon superhydrophobic surfaces have been known to exhibit distinctive evaporation modes such as a constant contact line (CCL), a constant contact angle (CCA), or both, our fundamental understanding of the effects of surface roughness on the wetting transition remains elusive. We show that the...

متن کامل

Dynamics of wetting: from inertial spreading to viscous imbibition.

We report the influence of the nature of boundaries on the dynamics of wetting. We review some work recently published and highlight new experimental observations. Our paper begins with the spreading of drops on substrates and demonstrates how the exponents of the spreading laws are affected either by the surface chemistry or by the droplet shape. We then discuss the imbibition of completely an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 23  شماره 

صفحات  -

تاریخ انتشار 2007